Андрей Андреевич Марков
(02.06.1856 — 20.07.1922)
Выдающийся русский математик, внёсший большой вклад в теорию вероятностей, математический анализ и теорию чисел.
Научные исследования А.А.Маркова тесно примыкают по своей тематике к работам старших представителей Петербургской математической школы — П. Л. Чебышева, Е. И. Золотарева и А. Н. Коркина. Блестящих результатов в области теории чисел А.А.Марков достиг в магистерской диссертации «О бинарных квадратичных формах положительного определителя» (1880).
Труды А.А.Маркова по анализу относятся к теории непрерывных дробей, к изучению предельных значений интегралов при некоторых условиях, наложенных на подынтегральную функцию, к вопросам улучшения сходимости рядов и к теории наилучших приближений. А.А.Марков дал чрезвычайно простое решение вопроса об определении верхней границы производной от многочлена по данной верхней границе самого многочлена (неравенство Маркова). В теории вероятностей А.А.Марков восполнил пробел, остававшийся в доказательстве основной предельной теоремы, и тем самым впервые дал полное и строгое доказательство этой теоремы в достаточно общих условиях. Дальнейшие работы А.А.Маркова по распространению основной предельной теоремы на последовательности зависимых величин привели к замечательной общей схеме «испытаний, связанных в цепь». На этой элементарной схеме А.А.Марков установил ряд основных закономерностей, положивших начало овременной теории вероятностных марковских процессов.
Исаак Ньютон
(Isaac Newton)
(25.12.1642 — 20.03.1727)
Английский физик, математик и астроном, один из создателей классической физики. Автор фундаментального труда «Математические начала натуральной философии», в котором он изложил закон всемирного тяготенияи три закона механики, ставшие основой классической механики.
Фундаментальные труды «Математические начала натуральной философии» (1687) и «Оптика» (1704). Ньютон разработал (независимо от Готфрида Лейбница) дифференциальное и интегральное исчисления. Открыл дисперсию света, хроматическую аберрацию, исследовал интерференцию и дифракцию, развивал корпускулярную теорию света, высказал гипотезу, сочетавшую корпускулярные и волновые представления. Построил зеркальный телескоп.
Михаил Васильевич Остроградский
(12.09.1801 — 20.12.1861)
Российский математик и механик, признанный лидер математиков Российской империи середины XIX века. Основные работы Остроградского относятся к прикладным аспектам математического анализа, механики, теории упругости и магнетизма, теории вероятностей. Он внёс также вклад в алгебру и теорию чисел.
Хорошо известен метод Остроградского для интегрирования рациональных функций (1844). В физике чрезвычайно полезна формула Остроградского для преобразования объёмного интеграла в поверхностный.
В последние годы жизни Остроградский опубликовал исследования по интегрированию уравнений динамики. Его работы продолжили Н. Д. Брашман и Н. Е. Жуковский.
Блез Паскаль
(Blaise Pascal )
(19.06.1623 — 19.08.1662)
Французский религиозный философ, писатель, математик и физик. Классик французской литературы, один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики. Написал первую работу о конических сечениях, в которой высказал одну из важных теорем проективной геометрии. Паскаль посвятил ряд работ арифметическим рядам и биномальным коэффициентам.
Большой вклад внес Паскаль и в разработку исчисления бесконечно малых. Особенно важен его «Трактат о синусах четверти круга». Паскаль здесь ввел эллиптические интегралы, которые позже сыграли важную роль в анализе и его применениях. Кроме того, ученый доказал ряд теорем касающихся замены переменных и интегрирования по частям.
Карл Пирсон
(Karl Pearson)
(27.03.1857 — 27.04.1936)
Выдающийся английский математик, статистик, биолог, философ (позитивист и агностик). Профессор прикладной математики и механики (с 1884), а затем евгеники (с 1911) Лондонского университета. Основатель знаменитой школы английских биометриков. Вместе с Ф. Гальтоном считается одним из основоположников биометрии. Основатель и издатель журнала «Biometrika». Внёс значительный вклад в развитие математической статистики (большое количество фундаментальных понятий).
Многие построения К. Пирсона напрямую связаны или разрабатывались с использованием антропологических материалов. Им разработаны многочисленные способы нумерической классификации и статистические критерии, применяемые во всех областях науки.
Жюль Анри Пуанкаре
(Jules Henri Poincar)
(29.04.1854 — 17.07.1912)
Гениальный французский ученый широкого профиля, внесший большой вклад во многие разделы математики, физики и механики.
Основоположник качественных методов теории дифференциальных уравнений и топологии. Создал основы теории устойчивости движения.
В его статьях до работ А. Эйнштейна были сформулированы основные положения специальной теории относительности, такие как условность понятия одновременности, принцип относительности, постоянство скорости света, синхронизация часов световыми сигналами, преобразования Лоренца, инвариантность уравнений Максвелла и др. Разработал и применил метод малого параметра к задачам небесной механики, провел классическое исследование задачи трех тел. В философии создал новое направление, получившее название конвенционализма.
Симон Дени Пуассон
(Siméon Denis Poisson)
(21.06.1781–25.04.1840)
Французский механик, математик, физик, член Парижской академии наук (1812). Физические исследования относятся к магнетизму, капиллярности, теории упругости, гидромеханике, теории колебаний, теории света. Член Петербургской академии наук (1826).
Пуассон написал свыше 300 работ, значительная часть которых сыграла важную роль в становлении современной науки. Основательно разработал многие разделы математической физики, ему принадлежит решение многих задач электростатики и магнетостатики. Положил начало теории девиаций. В его исследованиях прикладного характера важное место занимают работы по внешней баллистике и гидромеханике.
Георг Фридрих Бернхард Риман
(Georg Friedrich Bernhard Riemann)
(17.09.1826 — 20.07.1866)
Выдающийся немецкий математик. Вслед за Коши, рассмотрел формализацию понятия интеграла и ввёл своё определение — интеграл Римана. Создал общую теорию многозначных комплексных функций, построив для них «римановы поверхности». Риман использовал не только аналитические, но и топологические методы; позднее его труды продолжилПуанкаре, завершив создание топологии.
В аналитической теории чисел Риман исследовал распределение простых чисел. Он дал интегральное представление дзета-функции и вывел приближённую формулу для оценки количества простых чисел черезинтегральный логарифм.
В знаменитом докладе «О гипотезах, лежащих в основании геометрии» Риман определил общее понятие n-мерного многообразия и его метрику в виде произвольной положительно определённой квадратичной формы.
Владимир Андреевич Стеклов
(09.01.1864—30.05.1926)
Русский и советский математик. Академик Петербургской АН (1912), вице-президент АН СССР (1919—26). Доктор физико-математических наук (1902), профессор (1896).
Труды по математической физике и теории дифференциальных уравнений. Основными направлениями исследований В.А. Стеклова в математической физике были задачи о распространении тепла, равновесии вращающейся массы, задачи электростатики и др. Занимался вопросами разложения функций в ряды по заданным ортогональным системам функций, которые непосредственно связаны с приложением метода Фурье к решению краевых задач.
В.А. Стеклову принадлежат важные исследования по теории дифференциальных уравнений, математическому анализу, теории упругости и гидромеханике. Опубликовано около 150 работ. Основатель школы математической физики в нашей стране и один из блестящих представителей петербургской математической школы, созданной П. Л. Чебышевым. Под уководством Стеклова была налажена сеть сейсмологических станций, издание книг и научных журналов по математике. Организовал физико-математический институт при АН СССР, который впоследствии разделился на три научных учреждения. Среди них — Математический институт имени В. А. Стеклова. Именем Стеклова названо серое пятно на обратной стороне Луны.
Джордж Габриель Стокс
(George Gabriel Stokes)
(13.08.1819 — 01.02.1903)
Английский физик-теоретик и математик ирландского происхождения. Работал в Кембриджском университете, внёс значительный вклад в гидро- и газодинамику (Уравнения Навье — Стокса), оптику и математическую физику (Теорема Стокса). Был секретарём, а позднее президентом Лондонского королевского общества.
Работал преимущественно в области оптики, гидродинамики и математической физики. Однако ему принадлежит и ряд крупных математических исследований. Стокс ввел понятие равномерной сходимости (1848), вывел формулы для частных случаев перехода от интегралов высшей кратности к интегралам более низкой кратности. Особо следует отметить вывод Стокса одной из важнейших формул в векторном анализе (формула Стокса).
Пьер де Ферма
(Pierre de Fermat)
(17.08.1601 — 12.01.1665)
Французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года — советник парламента в Тулузе. Блестящий полиглот. Наиболее известен формулировкой Великой теоремы Ферма.
На досуге изучал математику, занимался исследованиями в области теории чисел, геометрии, алгебры, теории вероятностей. Большинство математических открытий ферма стали известны из его писем Б.Паскалю, Р.Декарту, Дж. Валлису и др. В теории чисел Ферма дал способ систематического нахождения всех делителей произвольного числа. Ферма вместе с Р. Декартом является основоположником аналитической геометрии.
Сергей Алексеевич Чаплыгин
(24.03.1869 — 08.10. 1942)
Русский физик, один из основоположников гидро- и аэродинамики, академик АН СССР (1929), Герой Социалистического Труда (1941).
Чаплыгин внёс большой вклад в математику. Его исследования по приближённому интегрированию дифференциальных уравнений принадлежат к крупным достижениям математической мысли. Идеи Чаплыгина оказались применимы не только для решения широких классов дифференциальных уравнений, но и при приближённом решении общих классов функциональных уравнений. Научные труды Чаплыгина касаются в основном гидромеханики, теоретической механики и газовой динамики. В 1910 г. Чаплыгин опубликовал работу «О давлении плоскопараллельного потока на преграждающие тела», которая положила начало ряду его исследований по теории крыла.
Пафнутий Львович Чебышев
(16.05.1821 – 26.11.1894)
Выдающийся русский математик и механик, автор классических открытий в теории чисел, теории вероятностей, теории механизмов. В частности, им доказаны в теории вероятностей, в общей форме, закон больших чисел, в теории чисел асимптотический закон распределения простых чисел и др. Чебышев был основоположником нового раздела теории функций: конструктивной теории функций, основным составным элементом которой является теория наилучших приближений функций многочленами.
Чебышев создал самостоятельную русскую математическую науку о механизмах, поставил в ней такие проблемы, к решению которых наука стала подходить только в начале 20 века.
Фердинанд Готтхольд Макс Эйзенштейн
(Ferdinand Gotthold Max Eisenstein)
(16.04.1823 — 11.10.1852)
Немецкий математик, доктор философии, член Берлинской АН (1852). Его труды относятся преимущественно к теории тренарных квадратичных и бинарных кубических форм, теории чисел и к некоторым вопросам теории эллиптических и абелевых трансцендентных функций. В курсе высшей алгебры один из достаточных признаков неприводимости многочлена над полем рациональных чисел называется критерием Эйзенштейна.
При изучении бинарных кубических форм Эйзенштейн столкнулся с первыми ковариантами. Из преобразования одной специальной эллиптической функции он вывел закон взаимности для кубических и биквадратичных вычетов. У него уже встречаются ро-функция Вейерштрасса и бесконечное произведение для вейерштрассовской сигма-функции.
Леонард Эйлер
(Leonhard Euler)
(04.04.1707 — 07.09.1783)
Швейцарский, немецкий и российский математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук.
Эйлер — автор более чем 800 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближённым вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и др.
Благодаря Эйлеру в математику вошли общая теория рядов, «формула Эйлера», углы Эйлера, операция сравнения по целому модулю, теория непрерывных дробей, аналитический фундамент механики, многочисленные приёмы интегрирования и решения дифференциальных уравнений, число e, обозначение i для мнимой единицы, гамма-функция и многое другое.
Владимир Игоревич Арнольд
(12.06.1937 — 03.06.2010)
Выдающийся российский математик, общественный деятель, академик РАН (1990). Почётный член Лондонского математического общества (1976), почётный доктор Парижского университета имени Пьера и Марии Кюри (1979), иностранный член Национальной АН США (1983), Французской АН (1983), Лондонского Королевского Общества (1988), почётный доктор Болонского университета (1991). Президент ММО с 1996, член Исполкома Международного математического союза.
Окончил МГУ в 1959 под научным руководством академика А.Н.Колмогорова. Еще будучи студентом, в 1957 г. решил тринадцатую проблему Гильберта.
Получил мировое признание, как соавтор КАМ–теории (в основе её лежит теорема Колмогорова–Арнольда–Мозера о стабильности интегрируемых гамильтоновых систем). Работал на мех—мате МГУ (1961–1986), институте им. В.А. Стеклова (1986–2010) и в Парижском университете 9-Дауфин (1993–2010). Короткое время поработал в Тринити—Колледже Кембриджского университета (Англия). Был заместителем главного редактора журнала «Функциональный анализ и его приложения».
В. И. Арнольд был известен как популяризатор современной науки и как яркий полемист, боровшийся с деградацией высшей школы в России и за рубежом.
Давид Гильберт
(David Hilbert)
(23.01.1862 — 14.02.1943)
Выдающийся немецкий математик – универсал, внёс значительный вклад в развитие многих областей математики.
В теории инвариантов Гильбертом доказана основная теорема о существовании конечного базиса системы инвариантов. Данное Гильбертом решение проблемы Дирихле положило начало разработке так называемых прямых методов в вариационном исчислении. Построенная Гильбертом теория интегральных уравнений с симметричным ядром составила одну из основ современного функционального анализа и особенно спектральной теории линейных операторов.
Классические «Основания геометрии» Гильберта (1899) стали образцом для дальнейших работ по аксиоматическому построению геометрии. Гильберт не только дал полную аксиоматику геометрии, но также детально проанализировал эту аксиоматику, доказав (построив ряд остроумных моделей) независимость каждой из своих аксиом. Для обоснования всей математики Гильберт разработал строгую логическую теорию доказательств, с помощью которой непротиворечивость математики свелась к доказательству непротиворечивости арифметики.
В физике Гильберт был сторонником строгого аксиоматического подхода и считал, что после аксиоматизации математики необходимо будет проделать эту процедуру с физикой.